
51
Matrix Factorizations

and Direct Solution
of Linear Systems

Christopher Beattie
Virginia Polytechnic Institute
and State University

51.1 Perturbations of Linear Systems 51-2
51.2 Triangular Linear Systems . 51-5
51.3 Gauss Elimination and LU Decomposition 51-7
51.4 Symmetric Factorizations . 51-13

51.5 Orthogonalization and the QR Factorization 51-16

References . 51-20

The need to solve systems of linear equations arises often within diverse disciplines of sci-
ence, engineering, and finance. The expression “direct solution of linear systems” refers
generally to computational strategies that are able to produce solutions to linear systems
after a predetermined number of arithmetic operations that depends only on the structure
and dimension of the coefficient matrix. The evolution of computers has and continues to
influence the development of these strategies and has also fostered particular styles of per-
turbation analysis suited to illuminating their behavior. Some general themes have become
dominant, as a result; others have been pushed aside. For example, Cramer’s Rule may
be properly thought of as a direct solution strategy for solving linear systems; however as
normally manifested, it requires a much larger number of arithmetic operations than Gauss
elimination and is generally much more susceptible to the deleterious effects of rounding.
Most current approaches for the direct solution of a linear system, Ax = b, are patterned
after Gauss elimination and favor an initial phase that partially decouples the system of
equations: zeros are introduced systematically into the coefficient matrix, transforming it
into triangular form; the resulting triangular system is easily solved. The entire process can
be viewed in this way:

1. Find invertible matrices {Si}ρi=1 such that Sρ . . . S2S1A = U is triangular; then
2. Calculate a modified right-hand side y = Sρ . . . S2S1b; and then
3. Determine the solution set to the triangular system Ux = y.

The matrices S1, S2, . . . Sρ are typically either row permutations of lower triangular
matrices (Gauss transformations) or unitary matrices. In either case, inverses are readily
available. Evidently, A can be written as A = NU , where N = (Sρ . . . S2S1)−1. A solution
framework may be built around the availability of decompositions such as this:

1. Find a decomposition A = NU such that U is triangular and Ny = b is easily
solved;

2. Solve Ny = b; then
3. Determine the solution set to the triangular system Ux = y.

51-1

51-2 Handbook of Linear Algebra

51.1 Perturbations of Linear Systems

In the computational environment afforded by current computers, the finite representation
of real numbers creates a small but persistent source of errors that may on occasion severely
degrade the overall accuracy of a calculation. This effect is of fundamental concern in
assessing strategies for solving linear systems.

Rounding errors can be introduced into the solution process for linear systems often
before any calculations are performed — as soon as data are stored within the computer
and represented within the internal floating point number system of the computer. Further
errors that may be introduced in the course of computation often may be viewed in aggregate
effectively as an additional contribution to this initial representation error. Inevitably, the
linear system for which a solution is computed will deviate slightly from the “true” linear
system and it becomes of critical interest to determine whether such deviations will have a
significant effect on the accuracy of the final computed result.

Definitions:

Let A ∈ Cn×n be a nonsingular matrix, b ∈ Cn, and then denote by x̂ = A−1b the unique solution

of the linear system Ax = b.

Given data perturbations δA ∈ Cn×n and δb ∈ Cn to A and b, respectively, the solution

perturbation, δx ∈ Cn satisfies the associated perturbed linear system (A + δA)(x̂ + δx) =

b + δb (presuming then that the perturbed system is consistent).

For any x̃ ∈ Cn, the residual vector associated with x̃ as an approximate solution to the linear

system Ax = b is defined as r(x̃) = b−Ax̃.

For any x̃ ∈ Cn, the associated (norm-wise) relative backward error of the linear system

Ax = b (with respect to the the p-norm, for 1 ≤ p ≤ ∞) is

ηp(A,b; x̃) = min

ε
∣∣∣∣∣∣

there exist δA, δb such that

(A+ δA)x̃ = b + δb with
‖δA‖p ≤ ε‖A‖p
‖δb‖p ≤ ε‖b‖p

 .

For any x̃ ∈ Cn, the associated component-wise relative backward error of the linear

system Ax = b is

ω(A,b; x̃) = min

ε
∣∣∣∣∣∣

there exist δA, δb such that

(A+ δA)x̃ = b + δb with
|δA| ≤ ε|A|
|δb| ≤ ε|b|

 ,

where the absolute values and inequalities applied to vectors and matrices are interpreted component-

wise: for example, |B| ≤ |A| means |bij| ≤ |aij| for all index pairs i, j.

The (norm-wise) condition number of the linear system Ax = b (with respect to the the

p-norm, for 1 ≤ p ≤ ∞) is

κp(A, x̂) = ‖A−1‖p
‖b‖p
‖x̂‖p

.

The matrix condition number of A (with respect to the the p-norm, for 1 ≤ p ≤ ∞) is

κp(A) = ‖A‖p‖A−1‖p.

The Skeel condition number of the linear system Ax = b is

cond(A, x̂) =
‖ |A−1| |A| |x̂|‖∞

‖x̂‖∞
.

The Skeel matrix condition number is cond(A) = ‖ |A−1| |A| ‖∞.

Matrix Factorizations and Direct Solution of Linear Systems 51-3

Facts: [Hig02], [SS90]

1. For any x̃ ∈ Cn, x̃ is the exact solution to any one of the following families of
perturbed linear systems

(A+ δAθ)x̃ = b + δbθ,

where θ ∈ C, δbθ = (θ− 1) r(x̃), δAθ = θ r(x̃)ỹ∗, and ỹ ∈ Cn is any vector such that
ỹ∗x̃ = 1. In particular, for θ = 0, δA = 0 and δb = −r(x̃); for θ = 1, δA = r(x̃)ỹ∗

and δb = 0.
2. (Rigal–Gaches Theorem) For any x̃ ∈ Cn,

ηp(A,b; x̃) =
‖r(x̃)‖p

‖A‖p‖x̃‖p + ‖b‖p
.

If ỹ is the dual vector to x̃ with respect to the p-norm (ỹ∗x̃ = ‖ỹ‖q ‖x̃‖p = 1 with
1
p + 1

q = 1), then x̃ is an exact solution to the perturbed linear system (A+ δAθ̃)x̃ =

b + δbθ̃ with data perturbations as in (1) and θ̃ =
‖A‖p‖x̃‖p

‖A‖p‖x̃‖p+‖b‖p , and as a result

‖δAθ̃‖p
‖A‖p

=
‖δbθ̃‖p
‖b‖p

= ηp(A,b; x̃).

3. (Oettli–Prager Theorem) For any x̃ ∈ Cn,

ω(A,b; x̃) = max
i

|ri|
(|A| |x̃| + |b|)i

.

If D1 = diag

(
ri

(|A| |x̃| + |b|)i

)
and D2 = diag(sign(x̃)i), then x̃ is an exact solution

to the perturbed linear system (A + δA)x̃ = b + δb with δA = D1 |A|D2 and δb =
−D1 |b|

|δA| ≤ ω(A,b; x̃) |A| and |δb| ≤ ω(A,b; x̃) |A|
and no smaller constant can be used in place of ω(A,b; x̃).

4. The reciprocal of κp(A) is the smallest norm-wise relative distance of A to a singular
matrix, i.e.,

1

κp(A)
= min

{
‖δA‖p
‖A‖p

∣∣∣∣ A+ δA is singular

}
.

In particular, the perturbed coefficient matrix A+ δA is nonsingular if

‖δA‖p
‖A‖p

<
1

κp(A)
.

5. 1 ≤ κp(A, x̂) ≤ κp(A) and 1 ≤ cond(A, x̂) ≤ cond(A) ≤ κ∞(A).
6. cond(A) = min {κ∞(DA) | D diagonal}.
7. If δA = 0, then

‖δx‖p
‖x̂‖p

≤ κp(A, x̂)
‖δb‖p
‖b‖p

.

8. If δb = 0 and A+ δA is nonsingular, then

‖δx‖p
‖x̂ + δx‖p

≤ κp(A)
‖δA‖p
‖A‖p

.

9. If ‖δA‖p ≤ ε‖A‖p, ‖δb‖p ≤ ε‖b‖p, and ε <
1

κp(A)
, then

‖δx‖p
‖x̂‖p

≤ 2 ε κp(A)

1− ε κp(A)
.

51-4 Handbook of Linear Algebra

10. If |δA| ≤ ε|A|, |δb| ≤ ε |b|, and ε <
1

cond(A)
, then

‖δx‖∞
‖x̂‖∞

≤ 2 ε cond(A, x̂)

1− ε cond(A)
.

Examples:

1. Let A =

[
1000 999

999 998

]
so A−1 =

[
−998 999

999 −1000

]
. Then ‖A‖1 = ‖A−1‖1 = 1999 so that

κ1(A) ≈ 3.996× 106. Consider

b =

[
1999

1997

]
associated with a solution x̂ =

[
1

1

]
.

A perturbation of the right-hand side δb =

[
−0.01

0.01

]
constitutes a relative change in the right-

hand side of
‖δb‖1
‖b̂‖1

≈ 5.005× 10−6 yet it produces a perturbed solution x̂ + δx =

[
20.97

−18.99

]
constituting a relative change

‖δx‖1
‖x̂‖1 = 19.98 ≤ 20 = κ1(A)

‖δb‖1
‖b‖1 . The bound determined by

the condition number is very nearly achieved. Note that the same perturbed solution x̂ + δx

could be produced by a change in the coefficient matrix

δA = r̃ỹ∗ = −

[
−0.01

0.01

] [
1

39.96
− 1

39.96

]
= (1/3996)

[
1 −1

−1 1

]

constituting a relative change
‖δA‖1
‖A‖1 ≈ 2.5× 10−7. Then (A+ δA)(x̂ + δx) = b.

2. Let n = 100 and A be tridiagonal with diagonal entries equal to −2 and all superdiagonal

and subdiagonal entries equal to 1 (associated with a centered difference approximation to

the second derivative). Let b be a vector with a quadratic variation in entries

bk = (k − 1)(100− k)/10,000.

Then

κ2(A, x̂) ≈ 1, but κ2(A) ≈ 4.1336× 103.

Since the elements of b do not have an exact binary representation, the linear system that

is presented to any computational algorithm will be Ax = b + δb with ‖δb‖2 ≤ ε‖b‖2,

where ε is the unit roundoff error. For example, if the linear system data is stored in IEEE

single precision format, ε ≈ 6 × 10−8. The matrix condition number, κ2(A), would yield

a bound of (6 × 10−8)(4.1336 × 103) ≈ 2.5 × 10−4 anticipating the loss of more than 4

significant digits in solution components even if all computations were done on the stored

data with no further error. However, the condition number of the linear system, κ2(A, x̂),

is substantially smaller and the predicted error for the system is roughly the same as the

initial representation error ≈ 6× 10−8, indicating that the solution will be fairly insensitive

to the consequences of rounding of the right-hand side data—assuming no further errors

occur. But, in fact, this conclusion remains true even if further errors occur, if whatever

computational algorithm that is used produces small backward error, as might be asserted

if, say, a final residual satisfies ‖r‖2 ≤ O(ε) ‖b‖2. This situation changes substantially if the

right-hand side is changed to

bk = (−1)k(k − 1)(100− k)/10,000,

which only introduces a sign variation in b. In this case, κ2(A, x̂) ≈ κ2(A), and the com-

ponents of the computed solution can be expected to lose about 4 significant digits purely on

Matrix Factorizations and Direct Solution of Linear Systems 51-5

the basis of errors that are made in the initial representation. Additional errors made in the

course of the computation can hardly be expected to improve this situation.

51.2 Triangular Linear Systems

Systems of linear equations for which the unknowns may be solved for one at a time in
sequence may be reordered to produce linear systems with triangular coefficient matrices.
Such systems can be solved both with remarkable accuracy and remarkable efficiency. Tri-
angular systems are the archetype for easily solvable systems of linear equations. As such,
they often constitute an intermediate goal in strategies for solving linear systems.

Definitions:

A linear system of equations Tx = b with T ∈ Cn×n (representing n equations in n unknowns) is

a triangular system if T = [tij] is either an upper triangular matrix (tij = 0 for i > j) or a

lower triangular matrix (tij = 0 for i < j).

Facts: [Hig02], [GV96]

1. [GV96, pp. 88–90]

Algorithm 1: Row-wise forward substitution for solving lower triangular system

Input: L = [`ij] ∈ Rn×n with `kj = 0 for k < j; b ∈ Rn
Output: solution vector x ∈ Rn that satisfies Lx = b

x1 ← b1/`1,1
for k = 2 to n

xk ← (bk − Lk,1:k−1 · x1:k−1)/`k,k

Algorithm 2: Column-wise back substitution for solving upper triangular system

Input: U = [uij] ∈ Rn×n with ukj = 0 for k > j; b ∈ Rn
Output: solution vector x ∈ Rn that satisfies Ux = b

for k = n down to 2 in steps of −1,
xk ← bk/uk,k
b1:k−1 ← b1:k−1 − xkU1:k−1,k

x1 ← b1/u1,1

2. Algorithm 1 involves as a core calculation dot products of portions of coefficient matrix
rows with portions of the emerging solution vector. This can incur a performance
penalty for large n from accumulation of dot products using a scalar recurrence. A
“column-wise” reformulation may have better performance for large n. Algorithm 2
is such a “column-wise” formulation for upper triangular systems.

3. An efficient and reliable implementation for the solution of triangular systems is
offered as part of the standard blas software library in xTRSz (see Chapter 92),
where x=S, D, C, or Z according to whether data are single or double precision real, or
single or double precision complex floating point numbers, respectively, and z=V or M
according to whether a single system of equations is to be solved or multiple systems
(sharing the same coefficient matrix) are to be solved, respectively.

51-6 Handbook of Linear Algebra

4. The solution of triangular systems using either Algorithm 1 or 2 is component-wise
backward stable. In particular the computed result, x̃, produced either by Algorithm
1 or 2 in solving a triangular system, Tx = b, will be the exact result of a perturbed

system (T + δT)x̃ = b, where |δT | ≤ n ε

1− n ε
|T | and ε is the unit roundoff error.

5. The error in the solution of a triangular system, Tx = b, using either Algorithm 1 or
2 satisfies

‖x̃− x̂‖∞
‖x̂‖∞

≤ n ε cond(T, x̂)

1− n ε (cond(T) + 1)
.

6. If T = [tij] is a lower triangular matrix satisfying |tii| ≥ |tij | for j ≤ i, the computed
solution to the linear system Tx = b produced by either Algorithm 1 or the variant
of Algorithm 2 for lower triangular systems satisfies

|x̂i − x̃i| ≤
2i n ε

1− n ε
max
j≤i
|x̃j |,

where x̃i are the components of the computed solution, x̃, and x̂i are the components
of the exact solution, x̂. Although this bound degrades exponentially with i, it shows
that early solution components will be computed to high accuracy relative to those
components already computed.

Examples:

1. Use Algorithm 2 to solve the triangular system1 2 −3

0 2 −6

0 0 3

x1x2
x3

 =

1

1

1

.
k = 3 step: Solve for x3 = 1/3. Update right-hand side:1 2

0 2

0 0

[x1
x2

]
=

1

1

1

− (1/3)

−3

−6

3

 =

2

3

0

.
k = 2 step: Solve for x2 = 3/2. Update right-hand side:1

0

0

[x1] =

2

3

0

− (3/2)

2

2

0

 =

−1

0

0

.
k = 1 step: Solve for x1 = −1.

2. [Hig02, p. 156] For ε > 0, consider T =

1 0 0

ε ε 0

0 1 1

. Then T−1 =

 1 0 0

−1 1
ε 0

1 − 1
ε 1

, and so

cond(T) = 5, even though

κ∞(T) = 2(2 +
1

ε
) ≈ 2

ε
+O(1).

Thus, linear systems having T as a coefficient matrix will be solved to high relative accuracy,

independent of both right-hand side and size of ε, despite the poor conditioning of T (as

measured by κ∞) as ε becomes small. However, note that

cond(TT) = 1 +
2

ε
and κ∞(TT) = (1 + ε)

2

ε
≈ 2

ε
+O(1).

Matrix Factorizations and Direct Solution of Linear Systems 51-7

So, linear systems having TT as a coefficient matrix may have solutions that are sensitive to

perturbations and indeed, cond(TT , x̂) ≈ cond(TT) for any right-hand side b with b3 6= 0

yielding solutions that are sensitive to perturbations for small ε.

51.3 Gauss Elimination and LU Decomposition

Gauss elimination is an elementary approach to solving systems of linear equations, yet it
still constitutes the core of the most sophisticated of solution strategies. In the kth step, a
transformation matrix, Mk, (a “Gauss transformation”) is designed so as to introduce zeros
into A — typically into a portion of the kth column — without harming zeros that have
been introduced in earlier steps. Typically, successive applications of Gauss transformations
are interleaved with row interchanges. Remarkably, this reduction process can be viewed
as producing a decomposition of the coefficient matrix A = NU , where U is a triangular
matrix and N is a row permutation of a lower triangular matrix.

Definitions:

For each index k, a Gauss vector is a vector in Cn with the leading k entries equal to zero:

`k = [0, . . . , 0︸ ︷︷ ︸
k

, `k+1, . . . , `n]T . The entries `k+1, . . . , `n are Gauss multipliers. The related matrix

Mk = I − `keTk
is called a Gauss transformation.

For the pair of indices (i, j), with i ≤ j the associated permutation matrix, Πi,j is an n× n
identity matrix with the ith row and j th row interchanged. Note that Πi,i is the identity matrix.

A matrix U ∈ Cm×n is in row-echelon form if (1) the first nonzero entry of each row has a

strictly smaller column index than all nonzero entries with strictly larger row index and (2) zero

rows occur at the bottom. The first nonzero entry in each row is called a pivot. The determining

feature of row echelon form is that pivots occur to the left of all nonzero entries in lower rows.

A matrix A ∈ Cm×n has an LU decomposition if there exists a unit lower triangular matrix

L ∈ Cm×m (Li,j = 0 for i < j and Li,i = 1 for all i) and an upper triangular matrix U ∈ Cm×n
(Ui,j = 0 for i > j) such that A = LU .

Facts: [GV96]

1. Let a ∈ Cn be a vector with a nonzero component in the rth entry, ar 6= 0. Define
the Gauss vector, `r = [0, . . . , 0︸ ︷︷ ︸

r

, ar+1

ar
, . . . , anar]T . The associated Gauss transformation

Mr = I − `re
T
r introduces zeros into the last n− r entries of a:

Mra = [a1, . . . , ar, 0, . . . , 0]T .

2. If A ∈ Cm×n with rankA = ρ ≥ 1 has ρ leading principal submatrices nonsingular,
A1:r,1:r, r = 1, . . . , ρ, then there exist Gauss transformations M1, M2, . . . , Mρ so
that

MρMρ−1 · · ·M1A = U

with U upper triangular. Each Gauss transformation Mr introduces zeros into the
rth column.

3. Gauss transformations are unit lower triangular matrices. They are invertible, and
for the Gauss transformation, Mr = I − `re

T
r ,

M−1r = I + `re
T
r .

51-8 Handbook of Linear Algebra

4. If Gauss vectors `1, `2, . . . , `n−1 are given with

`1 =

0

`21

`31
...

`n1

, `2 =

0

0

`32
...

`n2

, . . . , `n−1 =

0

0

...

0

`n,n−1

,

then the product of Gauss transformations Mn−1Mn−2 · · ·M2M1 is invertible and has
an explicit inverse

(Mn−1Mn−2 . . .M2M1)−1 = I +

n−1∑
k=1

`ke
T
k =

1 0 . . . 0 0

`21 1 0

`31 `32
. . . 0

... 1 0

`n1 `n2 . . . `n,n−1 1

.

5. If A ∈ Cm×n with rankA = ρ has ρ leading principal submatrices nonsingular,
A1:r,1:r, r = 1, . . . , ρ, then A has an LU decomposition: A = LU , with L unit lower
triangular and U upper triangular. The (i, j) entry of L: Li,j , with i > j, is the Gauss
multiplier that was used to introduce a zero into the corresponding (i, j) entry of A.

6. If A ∈ Cm×n with rankA = m (full), then the LU decomposition is unique.
7. Let a be an arbitrary vector in Cn. For any index r, there is an index µ ≥ r, a

permutation matrix Πr,µ, and a Gauss transformation Mr so that

MrΠr,µa = [a1, . . . , ar−1, aµ, 0, . . . , 0︸ ︷︷ ︸
n−r

]T .

The index µ is chosen so that aµ 6= 0 out of the set {ar, ar+1, . . . , an}. If ar 6= 0,
then µ = r and Πr,µ = I is a possible choice; if each element is zero, ar = ar+1 =
· · · = an = 0, then µ = r, Πr,µ = I, and Mr = I is a possible choice.

8. For every matrix A ∈ Cm×n with rankA = ρ, there exists a sequence of ρ in-
dices µ1, µ2, . . . , µρ with i ≤ µi ≤ m for i = 1, . . . , ρ and Gauss transformations
M1, . . . , Mρ so that MρΠρ,µρMρ−1Πρ−1,µρ−1

· · ·M1Π1,µ1
A = U with U upper tri-

angular and in row echelon form. Each pair of transformations MrΠr,µr introduces
zeros below the rth pivot.

9. For r < i < j, Πi,jMr = M̃rΠi,j , where M̃r = I − ˜̀
re
T
r and ˜̀

r = Πi,j`r (i.e., the i

and j entries of `r are interchanged to form ˜̀
r).

10. For every matrix A ∈ Cm×n with rankA = ρ, there is a row permutation of A that
has an LU decomposition: PA = LU , with a permutation matrix P , unit lower tri-
angular matrix L, and an upper triangular matrix U that is in row echelon form. P
can be chosen as P = Πρ,µρΠρ−1,µρ−1

. . .Π1,µ1
from Fact 8, though in general there

can be many other possibilities as well.
11. Reduction of A with Gauss transformations (or, equivalently, calculation of an LU

factorization) must generally incorporate row interchanges. As a practical matter,
these row interchanges commonly are chosen so as to bring the largest magnitude en-
try within the column being reduced up into the pivot location. This strategy is called
“partial pivoting.” In particular, if zeros are to be introduced into the kth column
below the rth row (with r ≤ k), then one seeks an index µr such that r ≤ µr ≤ m and
|Aµr,k| = maxr≤i≤m |Ai,k|. When µ1, µ2, . . . , µρ in Fact 8 are chosen in this way, the
reduction process is called “Gaussian Elimination with Partial Pivoting” (GEPP) or,
within the context of factorization, the permuted LU factorization (PLU).

Matrix Factorizations and Direct Solution of Linear Systems 51-9

12. [GV96, p. 115]

Algorithm 3: GEPP/PLU decomposition of a rectangular matrix (outer product)

Input: A ∈ Rm×n

Output: L ∈ Rm×m (unit lower triangular matrix)

U ∈ Rm×n (upper triangular matrix - row echelon form)

P ∈ Rm×m (permutation matrix) so that PA = LU

(P is represented with an index vector p such that y = Pz⇔ yj = zpj)

L← Im; U ← 0 ∈ Rm×n; p = [1, 2, 3, . . . , m]; and r ← 1;

for k = 1 to n

Find µ such that r ≤ µ ≤ m and |Aµ,k| = maxr≤i≤m |Ai,k|
if Aµ,k 6= 0, then

Exchange Aµ,k:n ↔ Ar,k:n, Lµ,1:r−1 ↔ Lr,1:r−1, and pµ ↔ pr
Lr+1:m,r ← Ar+1:m,k/Ar,k
Ur,k:n ← Ar,k:n
for i = r + 1 to m

for j = k + 1 to n

Ai,j ← Ai,j − Li,rUr,j

r ← r + 1

Algorithm 4: GEPP/PLU decomposition of a rectangular matrix (gaxpy)
Input: A ∈ Rm×n

Output: L ∈ Rm×m (unit lower triangular matrix),

U ∈ Rm×n (upper triangular matrix - row echelon form), and

P ∈ Rm×m (permutation matrix) so that PA = LU

(P is represented with an index vector π that records row interchanges

πr = µ means row r and row µ ≥ r were interchanged in step r)

L← Im ∈ Rm×m; U ← 0 ∈ Rm×n; and r ← 1;

for j = 1 to n

v← A1:m,j

if r > 1, then

for i = 1 to r − 1,

Exchange vi ↔ vπi

Solve the triangular system, L1:r−1,1:r−1 · z = v1:r−1

U1:r−1,j ← z

Update vr:m ← vr:m − Lr:m,1:r−1 · z

Find µ such that |vµ| = maxr≤i≤m |vi|
if vµ 6= 0, then

πr ← µ

Exchange vµ ↔ vr
for i = 1 to r − 1,

Exchange Lµ,i ↔ Lr,i

Lr+1:m,r ← vr+1:m/vr
Ur,j ← vr
r ← r + 1

51-10 Handbook of Linear Algebra

13. The condition for skipping reduction steps (that is, when Aµ,k = 0 in Algorithm 3 or
when vµ = 0 in Algorithm 4) indicates deficiency of column rank and the potential for
an infinite number of solutions. These conditions are sensitive to rounding errors that
may occur in the calculation of those columns and as such, GEPP/PLU is applied for
the most part in full column rank settings (rankA = n), guaranteeing that no zero
pivots are encountered and that no reduction steps are skipped.

14. Both Algorithms 3 and 4 require approximately 2
3ρ

3+ρm(n−ρ)+ρn(m−ρ) arithmetic
operations (with rankA = ρ). Algorithm 3 involves as a core calculation the updating
of a submatrix having ever diminishing size. For large matrix dimension, the contents
of this submatrix, Ar+1:m,k+1:n, may be widely scattered through computer memory
and a performance penalty can occur in gathering the data for computation (which
can be costly relative to the number of arithmetic operations that are performed with
that data). Algorithm 4 is a reorganization that avoids excess data motion by delay-
ing updates to columns until the step within which they have zeros introduced. This
forces modifications to the matrix entries to be made just one column at a time and
the necessary data motion can be more efficient.

15. The overhead associated with partial pivoting comes from lines beginning “Find µ such

that . . . ” in Algorithms 3 and 4, involving a net mn − n2

2 floating point comparison
each of which are comparable in computational effort to a floating point subtraction.
Typically this adds negligible overhead relative to the core complexity of O(ρ3) arith-
metic operations. Other strategies for avoiding the adverse effects of small pivots exist.
Some are more aggressive than partial pivoting in producing the largest possible pivot
(consequently have higher overhead), others are more restrained (and so, are cheaper).
(a) “Complete pivoting” uses both row and column permutations to bring in the

largest possible pivot: If zeros are to be introduced into the kth column in row entries
r + 1 to m, then one seeks indices µ and ν such that r ≤ µ ≤ m and k < ν ≤ n such
that |Aµ,ν | = max r≤i≤m

k<j≤n
|Ai,j |. Gauss elimination with complete pivoting produces

a unit lower triangular matrix L ∈ Rm×m, an upper triangular matrix U ∈ Rm×n,
and two permutation matrices, P and Q, so that PAQ = LU . This strategy can re-

quire O(mn
2

2 −
n3

6) floating point comparisons, potentially adding now nonnegligible
overhead to the core arithmetic requirements. Overhead associated with data motion
can become significant as well. The added stability that complete pivoting provides
is rarely perceived to be worth the additional overhead.
(b) “Threshold pivoting” identifies pivot candidates in each step that achieve a sig-

nificant (predetermined) fraction of the magnitude of the pivot that would have been
used in that step for partial pivoting: Consider all µ̂ such that r ≤ µ̂ ≤ m and
|Aµ̂,k| ≥ τ ·maxr≤i≤m |Ai,k|, where τ ∈ (0, 1) is a given threshold. This allows pivots
to be chosen on the basis of other criteria such as influence on sparsity while still
providing some protection from instability. τ can often be chosen quite small (τ = 0.1
or τ = 0.025 are typical values). See Section 53.5.
(c) “Rook pivoting” searches the unreduced portion of the matrix for a pivot by trac-

ing a path alternately along columns and rows (“rook”-like) following largest mag-
nitude entries until an entry having largest magnitude in both its row and column
is discovered. This approach is more aggressive than partial pivoting, yet typically
has overhead that is a small multiple of that for partial pivoting. For some matrices
overhead can be comparable to complete pivoting.

16. An efficient and reliable implementation of the GEPP/PLU factorization is offered
in the lapack software library as xGETRF; solving associated linear systems may be
done with xGESV (see Section 93.2).

Matrix Factorizations and Direct Solution of Linear Systems 51-11

17. If P̂ ∈ Rm×m, L̂ ∈ Rm×m, and Û ∈ Rm×n are the computed permutation matrix and
LU factors from either Algorithm 3 or 4 on A ∈ Rm×n, then

L̂Û = P̂ (A+ δA) with |δA| ≤ 2n ε

1− n ε
|L̂| |Û |

and for the particular case that m = n and A is nonsingular, if an approximate solu-
tion, x̂, to Ax = b is computed by solving the two triangular linear systems, L̂y = P̂b
and Û x̂ = y, then x̂ is the exact solution to a perturbed linear system:

(A+ δA)x̂ = b with |δA| ≤ 2n ε

1− n ε
P̂T |L̂| |Û |.

Furthermore, |Li,j | ≤ 1 and |Ui,j | ≤ 2i−1 maxk≤i |Ak,j |, so

‖δA‖∞ ≤
2n n2 ε

1− n ε
‖A‖∞.

Examples:

1. Using Algorithm 3, find a permuted LU factorization of

A =

1 1 2 2

2 2 4 6

−1 −1 −1 1

1 1 3 1

 .
Setup: p = [1 2 3 4], r ← 1

k = 1 step: µ← 2, p = [2 1 3 4]

Permuted A:

2 2 4 6

1 1 2 3

−1 −1 −2 1

1 1 3 1

LU snapshot : L =

1 0 0 0

1
2 1 0 0

− 1
2 0 1 0

1
2 0 0 1

 and U =

2 2 4 6

0 0 0 0

0 0 0 0

0 0 0 0

.

Updated A2:4,2:4:

0 0 −1

0 1 4

0 1 −2

r ← 2

k = 2 step: µ← 2, |A2,2| = max2≤i≤4 |Ai,2| = 0 (skip reduction step)

k = 3 step: µ← 3, p = [2 3 1 4], |A3,3| = max2≤i≤4 |Ai,3| = 1

Permuted A2:4,3:4:

1 4

0 −1

1 −2

LU snapshot : L =

1 0 0 0

− 1
2 1 0 0

1
2 0 1 0

1
2 1 0 1

 and U =

2 2 4 6

0 0 1 4

0 0 0 0

0 0 0 0

.
Updated A3:4,4:

[
−1

−6

]
r ← 3

51-12 Handbook of Linear Algebra

k = 4 step: µ← 4, p = [2 3 4 1], |A4,4| = max3≤i≤4 |Ai,4| = 6

Permuted A2:4,3:4:

[
−6

−1

]

LU snapshot : L =

1 0 0 0

− 1
2 1 0 0

1
2 1 1 0

1
2 0 1

6 1

 and U =

2 2 4 6

0 0 1 4

0 0 0 −6

0 0 0 0

.
r ← 4

The permutation matrix associated with p = [2 3 4 1] is

P =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 and PA =

2 2 4 6

−1 −1 −1 1

1 1 3 1

1 1 2 2

 =

1 0 0 0

− 1
2 1 0 0

1
2 1 1 0

1
2 0 1

6 1

2 2 4 6

0 0 1 4

0 0 0 −6

0 0 0 0

= L · U.

2. Using Algorithm 4, solve the system of linear equations1 3 1

2 2 −1

2 −1 0

x1x2
x3

 =

 1

−3

3

 .
Phase 1: Find permuted LU decomposition.

r ← 1

j = 1 step: v←

1

2

2

. π1 ← µ = 2. Permuted v:

2

1

2

LU snapshot : π = [2] L =

 1 0 0

1
2 1 0

1 0 1

 and U =

2 0 0

0 0 0

0 0 0

 .
r ← 2

j = 2 step: v←

 3

2

−1

. Permuted v:

 2

3

−1

.

Solve 1 · z = 2. U1,2 ← z = [2].[
v2

v3

]
←

[
2

−3

]
=

[
3

−1

]
−

[
1
2

1

]
[2]

π2 ← µ = 3. L3,2 ← − 2
3 and U2,2 ← −3

LU snapshot : π = [2, 3] L =

 1 0 0

1 1 0

1
2 − 2

3 1

 and U =

2 2 0

0 −3 0

0 0 0

 .

Matrix Factorizations and Direct Solution of Linear Systems 51-13

r ← 3

j = 3 step: v←

 1

−1

0

 Permuted v:

−1

0

1

. Solve

[
1 0

1 1

]
· z =

[
−1

0

]
,

[
U1,3

U2,3

]
← z =

[
−1

1

]
. v3 ← 2 1

6 = 1− [12 , −
2
3] ·

[
−1

1

]
π3 → 3 and U3,3 ← 2 1

6

LU snapshot : π = [2, 3, 3] L =

 1 0 0

1 1 0

1
2 − 2

3 1

 and U =

2 2 −1

0 −3 1

0 0 2 1
6

 .

The permutation matrix associated with π is

P =

0 1 0

0 0 1

1 0 0

 and PA =

2 2 −1

2 −1 0

1 3 1

 =

 1 0 0

1 1 0

1
2 − 2

3 1

2 2 −1

0 −3 1

0 0 2 1
6

 = L · U.

Phase 2: Solve the lower triangular system Ly = Pb. 1 0 0

1 1 0

1
2 − 2

3 1

y1y2
y3

 =

−3

3

1

 ⇒ y1 = −3, y2 = 6, y3 = 6
1

2
.

Phase 3: Solve the upper triangular system Ux = y.2 2 −1

0 −3 1

0 0 2 1
6

x1x2
x3

 =

−3

6

6 1
2

 ⇒ x1 = 1, x2 = −1, x3 = 3.

51.4 Symmetric Factorizations

Real symmetric matrices (A = AT) and their complex analogs, Hermitian matrices (Chap-
ter 9), are specified by roughly half the number of parameters than general n× n matrices,
so one could anticipate benefits that take advantage of this structure.

Definitions:

An n× n matrix, A, is Hermitian if A = A∗ = ĀT .

A ∈ Cn×n is positive-definite if x∗Ax > 0 for all x ∈ Cn with x 6= 0.

The Cholesky decomposition (or Cholesky factorization) of a positive-definite matrix A

is A = GG∗ with G ∈ Cn×n lower triangular and having positive diagonal entries.

Facts: [Hig02], [GV96]

1. A positive-definite matrix is Hermitian. Note that the similar but weaker assertion
for a matrix A ∈ Rn×n that “xTAx > 0 for all x ∈ Rn with x 6= 0” does not imply
that A = AT .

51-14 Handbook of Linear Algebra

2. If A ∈ Cn×n is positive-definite, then A has an LU decomposition, A = LU , and the
diagonal of U , {u11, u22, . . . , unn}, has strictly positive entries.

3. If A ∈ Cn×n is positive-definite, then the LU decomposition of A satisfies A = LU
with U = DL∗ and D = diag(U). Thus, A can be written as A = LDL∗ with L unit
lower triangular and D diagonal with positive diagonal entries. Furthermore, A has
a Cholesky decomposition A = GG∗ with G ∈ Cn×n lower triangular. Indeed, if

D̂ = diag({
√
u11,

√
u22, . . . ,

√
unn})

then D̂D̂ = D and G = L D̂.
4. [GV96, p. 144] The Cholesky decomposition of a positive-definite matrix A can be

computed directly:

Algorithm 5: Cholesky decomposition of a positive-definite matrix

Input: A ∈ Cn×n positive definite
Output: G ∈ Cn×n (lower triangular matrix so that A = GG∗)
G← 0 ∈ Cn×n;
for j = 1 to n

v← Aj:n,j
for k = 1 to j − 1,

v← v −Gj,kGj:n,k
Gj:n,j ← 1√

v1
v (v1 is v(1))

5. Algorithm 5 requires approximately n3/3 floating point arithmetic operations and n
floating point square roots to complete (roughly half of what is required for an LU
decomposition).

6. If A ∈ Rn×n is symmetric and positive-definite and Algorithm 5 runs to completion
producing a computed Cholesky factor Ĝ ∈ Rn×n, then

ĜĜT = A+ δA with |δA| ≤ (n+ 1) ε

1− (n+ 1) ε
|Ĝ| |ĜT |.

Furthermore, if an approximate solution, x̂, to Ax = b is computed by solving the
two triangular linear systems Ĝy = b and ĜT x̂ = y, and a scaling matrix is defined
as ∆ = diag(

√
aii), then the scaled error ∆(x− x̂) satisfies

‖∆(x− x̂)‖2
‖∆x‖2

≤ κ2(H) ε

1− κ2(H) ε
,

where A = ∆H ∆. If κ2(H) � κ2(A), then it is quite likely that the entries of ∆x̂
will have mostly the same magnitude and so the error bound suggests that all entries
of the solution will be computed to high relative accuracy.

7. If A ∈ Cn×n is Hermitian and has all leading principal submatrices nonsingular, then
A has an LU decomposition that can be written as A = LU = LDL∗ with L unit
lower triangular and D diagonal with real diagonal entries. Furthermore, the number
of positive and negative entries of D is equal to the number of positive and negative
eigenvalues of A, respectively (the Sylvester law of inertia).

8. It may not be prudent to compute the LU (or LDLT) decomposition of a Hermitian
indefinite matrix A without pivoting, yet the usual pivoting strategies will likely
eliminate advantages that symmetry might offer. Alternatives use symmetric pivoting

Matrix Factorizations and Direct Solution of Linear Systems 51-15

to produce a factorization of the permuted matrix: PAPT = LDLT where L is unit
lower triangular as before, but D is block diagonal with 1×1 or 2×2 diagonal blocks.
The block structure is due to the possibility of using 2 × 2 principal submatrices as
“pivots” during the reduction process. (see [GV96, Hig02, Ste98] for details).
(a) “Bunch-Parlett pivoting” uses either the largest magnitude diagonal entry in

the unreduced submatrix provided it is not much smaller in magnitude than the
entry that would have been chosen with complete pivoting, or failing that, permutes
into pivot position a 2 × 2 principal submatrix that captures the complete pivoting
choice. The number of comparisons necessary for this strategy is the same as what
is necessary for complete pivoting, so the added overhead is nonnegligible and, as is
the case with complete pivoting, this approach is generally viewed as unnecessarily
conservative.
(b) “Bunch-Kaufman pivoting” uses a similar strategy but akin to partial pivoting,

using either a 2 × 2 principal submatrix that captures the partial pivoting choice
or one of the two diagonal entries of this submatrix, the choice being governed by
their relative magnitudes. The number of comparisons necessary for this strategy is
similar to what is necessary for partial pivoting, so the added overhead is generally
insignificant. Although the magnitude of the Gauss multipliers (entries of L) cannot
be bounded uniformly with respect to A, the solution of linear systems with this
approach is nonetheless backward stable (see [Hig02] for a discussion).
(c) “Symmetric Rook pivoting” is a refinement of the Bunch-Kaufman approach us-

ing a symmetrized form of rook pivoting. It is more aggressive than Bunch-Kaufman
pivoting; generally has similar overhead; may on occasion require overhead compara-
ble to complete pivoting; but, significantly for certain applications, will produce an
L factor that may be bounded uniformly with respect to A.

9. An efficient and reliable implementation of Cholesky factorization (Algorithm 5) is in
the lapack software library as xPOTRF; for symmetric indefinite matrices, the LDLT

factorization with Bunch-Kaufman pivoting is available as xSYTRF. Solving associated
linear systems may be done with xPOSV and xSYSV, respectively (see Section 93.2).

Examples:

1. Calculate the Cholesky decomposition of the 3× 3 Hilbert matrix,

A =

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

 .

Setup: G←

0 0 0

0 0 0

0 0 0

 .
j = 1 step: v← [1, 1

2 ,
1
3]T

G snapshot : G =

1 0 0

1
2 0 0

1
3 0 0

51-16 Handbook of Linear Algebra

j = 2 step: v←

[
1
3
1
4

]
− 1

2

[
1
2
1
3

]
=

[
1
12
1
12

]

G snapshot : G =

1 0 0

1
2

1
2
√
3

0

1
3

1
2
√
3

0

j = 3 step: v← 1

5 −
(
1
3

)2 − (1
2
√
3

)2
= 1

180 =
(

1
6
√
5

)2
G snapshot : G =

1 0 0

1
2

1
2
√
3

0

1
3

1
2
√
3

1
6
√
5

51.5 Orthogonalization and the QR Factorization

The process of transforming an arbitrary linear system into a triangular system may also
be approached by systematically introducing zeros into the coefficient matrix with unitary
transformations: Given a system Ax = b, (1) find unitary matrices V1, V2, · · · V` such that
V` . . . V2V1A = T is triangular; (2) calculate y = V` · · ·V2V1b; and (3) solve the triangular
system Tx = y. Or equivalently,

1. Factor A = QR, where Q is unitary (Q−1 = Q∗) and R is upper triangular.
2. Calculate y = Q∗b.
3. Solve the triangular system, Rx = y.

The classical approach of Gram-Schmidt orthogonalization leads spontaneously to the
QR factorization of a matrix. This topic is discussed in Section 5.5. Two other types of
rudimentary unitary transformations to affect the QR factorization will be described here:
Householder transformations and Givens transformations.

Definitions:

A QR factorization of a matrix A ∈ Cm×n is a factorization of A = QR where Q ∈ Cm×m is

unitary (Q−1 = Q∗) and R ∈ Cm×n is upper triangular (R = [rij] with rij = 0 when i > j). See

also Section 5.5.

Let v ∈ Cn be a unit vector: ‖v‖2 = 1. The matrix H = I − 2vv∗ is called a Householder

transformation (or Householder reflector). In this context, v is a Householder vector.

For θ, ϑ ∈ [0, 2π), let Gij be an n×n identity matrix modified so that the (i, i) and (j, j) entries

are each replaced by c = cos(θ), the (i, j) entry is replaced by s = eıϑ sin(θ), and the (j, i) entry is

replaced by −s̄ = −e−ıϑ sin(θ):

Gij =

1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...

0 · · · c · · · s · · · 0

...
...

. . .
...

...

0 · · · −s̄ · · · c · · · 0

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · 1

.

Matrix Factorizations and Direct Solution of Linear Systems 51-17

Gij is called a Givens transformation (or Givens rotation).

Facts: [GV96, Hig02, Ste98]
1. The QR factorization plays in important role in the solution of least squares problems:

GivenA ∈ Cm×n and b ∈ Cm, find x̂ that solves minx∈Cn ‖Ax−b‖2. (See Chapter 52.)
2. A closely related problem is the solution of underdetermined linear systems: Given
A ∈ Rm×n with m < n and b ∈ Rm , find x̂ that solves Ax = b. The solution to
this problem (if it exists) will not be unique but may be characterized as follows:

Calculate a QR decomposition of AT as AT = QR = Q

[
R̂
0

]
. Then the solution set

to Ax = b may be parameterized as x̂(z) = Q

[
R̂−Tb

z

]
for arbitrary z ∈ Rn−m. The

solution to Ax = b that has minimum norm is given by x̂(0) (i.e., with z = 0).

3. If A ∈ Rm×n with m ≥ n and A = QR = Q

[
R̂
0

]
is the QR factorization of A, then

R̂T is the Cholesky factor of the positive-semidefinite matrix, ATA: ATA = R̂T R̂ (see
Section 51.4).

4. The rank of A is the same as the rank of R. If A is full rank, the diagonal entries of
R provide a bound on how near A is to rank deficiency:

min {‖E‖ | rank(A+ E) < rankA} ≤ min
i
|rii|.

This bound may be very pessimistic. There are refinements of QR factorization that
incorporate pivoting among other strategies to obtain a rank-revealing factorization.
See Sections 52.9 and 59.3.

5. Householder transformations are unitary matrices. The action of H on a vector a has
a geometric interpretation as a reflection of a across the hyperplane with a normal v.

6. Let a ∈ Cn be a nonzero vector. Define w = sign(a1)‖a‖e1+a with e1 = [1, 0, . . . , 0]T ∈
Cn and v = w/‖w‖2 Then the Householder transformation H = I − 2vv∗ satisfies

Ha = αe1 with α = −sign(a1)‖a‖,

i.e., H is a unitary matrix that introduces n− 1 zeros into the vector a.
7. [GV96, pp. 210–213]

Algorithm 6: Householder QR factorization of a rectangular matrix

Input: A ∈ Cm×n with m ≥ n
Output: the QR factorization A = QR; R overwrites A.

for k = 1 to n
x← Ak:m,k
vk ← sign(x1)‖x‖e1 + x, where e1 ∈ Cm−k+1

vk ← vk/‖vk‖
Ak:m,k:n ← (Im−k+1 − 2vkv

∗
k)Ak:m,k:n

Q← Im
for k = n to 1 by − 1

Qk:m,k:m ← Qk:m,k:m(Im−k+1 − 2vkv
∗
k)

8. In Algorithm 6, the Householder reflectors are accumulated to form Q in order of
size, reversing the order in which they were generated. This is more efficient than
accumulating the reflectors in the order that they are generated. In many applications,

51-18 Handbook of Linear Algebra

it suffices to have Q represented implicitly as the product of Householder reflectors
and it may not be necessary to compute Q explicitly. Data necessary to recreate the
action of Q may be stored in subdiagonal entries of A as zeros are created there.

9. If A ∈ Rm×n with m ≥ n, then the cost of Algorithm 6 without explicitly computing
Q is 2n2(m− n/3) flops.

10. If R̂ ∈ Cm×n is the computed upper triangular matrix provided by Algorithm 6, then
there is a unitary matrix, Q̃ ∈ Cm×m such that Q̃R̂ is the exact QR factorization of
a perturbation of A: A+ δA = Q̃R̂ where δA has columns δA = [δa1 δa2 . . . , δan] ∈
Cm×n and ‖δak‖2 ≤

cmn ε

1− cmn ε
‖ak‖2 for a c > 0 having modest magnitude. If Q̂ is

the computed Q provided by Algorithm 6, then ‖Q̂− Q̃‖F ≤
cmn

√
n ε

1− cmn ε
.

11. An efficient and reliable implementation of the QR factorization using Householder
reflectors (as in Algorithm 6) appears in the lapack software library as xGEQRF (see
Section 93.2).

12. A Givens rotation is a unitary matrix. The action of Gij on a vector a has a geometric
interpretation as a (complex) rotation of a within the (i, j) coordinate plane.

13. For any scalars x, y ∈ C, there exists a Givens rotation G ∈ C2×2 such that

G

[
x

y

]
=

[
c s

−s̄ c

][
x

y

]
=

[
r

0

]
,

where c, s, and r can be computed via

(a) If y = 0 (includes the case x = y = 0), then c = 1, s = 0, r = x.

(b) If x = 0 (y must be nonzero), then c = 0, s = sign(ȳ), r = |y|.
(c) If both x and y are nonzero, then c = |x|/

√
|x|2 + |y|2,

s = sign(x)ȳ/
√
|x|2 + |y|2, r = sign(x)

√
|x|2 + |y|2.

14. [GV96, pp. 226–227]

Algorithm 7: Givens QR factorization of a rectangular matrix

Input: A ∈ Cm×n with m ≥ n
Output: the QR factorization A = QR; the upper triangular part of R
is stored in the upper triangular part of A

Q← Im
for k = 1 to n

for i = k + 1 to m

Compute G =

[
c s

−s̄ c

]
such that G

[
Akk

Aik

]
=

[
r

0

]
(via Fact 13).[

Ak,k:n

Ai,k:n

]
← G

[
Ak,k:n

Ai,k:n

]
[Q1:m,k, Q1:m,i]← [Q1:m,k, Q1:m,i]G

∗

15. As noted above, in many applications it suffices to have Q represented implicitly
removing the need to accumulate Givens rotations to form Q explicitly. Data needed
to recreate Q may be stored in subdiagonal locations in A, as zeros are introduced.

16. If A ∈ Rm×n with m ≥ n, then the cost of Algorithm 7 without explicitly computing
Q is 3n2(m− n/3) flops.

Matrix Factorizations and Direct Solution of Linear Systems 51-19

17. If R̂ ∈ Cm×n is the computed upper triangular matrix provided by Algorithm 7, then
there is a unitary matrix, Q̃ ∈ Cm×m such that Q̃R̂ is the exact QR factorization of
a perturbation of A: A+ δA = Q̃R̂ where δA has columns δA = [δa1 δa2 . . . , δan] ∈

Cm×n and ‖δak‖2 ≤
c (m+ n− 2) ε

1− c (m+ n− 2) ε
‖ak‖2 for a c > 0 having modest magnitude.

Examples:

1. We shall use Givens rotations to transform A =

1 1

1 2

1 3

 to upper triangular form, as in

Algorithm 7. First, to annihilate the element in position (2,1), we use Fact 5 with (x, y) =

(1, 1) and obtain c = s = 1/
√

2; hence:

A(1) = G1A =

 0.7071 0.7071 0

−0.7071 0.7071 0

0 0 1

1 1

1 2

1 3

 =

1.4142 2.1213

0 0.7071

1 3

 .

Next, to annihilate the element in position (3,1), we use (x, y) = (1.4142, 1) in Fact 5 and

get

A(2) = G2A
(1) =

 0.8165 0 0.5774

0 1 0

−0.5774 0 0.8165

A(1) =

1.7321 3.4641

0 0.7071

0 1.2247

 .
Finally, we annihilate the element in position (3,2) using (x, y) = (.7071, 1.2247):

A(3) = G3A
(2) =

1 0 0

0 0.5000 0.8660

0 −0.8660 0.5000

A(2) =

1.7321 3.4641

0 1.4142

0 0

 .
As a result, R = A(3) and R̂ consists of the first two rows of A(3). The matrix Q can be

computed as the product GT1 G
T
2 G

T
3 .

2. We shall use Householder reflections to transform A from Example 1 to upper triangular

form as in Algorithm 6. First, let a = A:,1 =
[
1 1 1

]T
, γ1 = −

√
3, ã =

[
−
√

3 0 0
]T

,

and u1 =
[
0.8881 0.3251 0.3251

]T
; then

A(1) =
(
I − 2u1u

T
1

)
A = A− u1

2uT1 A︷ ︸︸ ︷[
3.0764 5.0267

]
=

−1.7321 −3.4641

0 0.3660

0 1.3660

 .

Next, γ2 = −‖A(1)
2:3,2‖2, u2 =

[
0 0.7934 0.6088

]T
, and

A(2) =
(
I − 2u2u

T
2

)
A(1) = A(1) − u2

2uT2 A
(1)︷ ︸︸ ︷[

0 2.2439
]

=

−1.7321 −3.4641

0 −1.4142

0 0

 .

Note that R = A(2) has changed signs as compared with Example 1. The matrix Q can

be computed as
(
I − 2u1u

T
1

)(
I − 2u2u

T
2

)
. Therefore, we have full information about the

transformation if we store the vectors u1 and u2.

51-20 Handbook of Linear Algebra

References

[Dem97] J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[GV96] G.H. Golub and C.F. Van Loan. Matrix Computations, 3rd ed. Johns Hopkins University

Press, Baltimore, MD, 1996.

[Hig02] N.J. Higham. Accuracy and Stability of Numerical Algorithms, 2nd ed. SIAM, Philadel-

phia, 2002.

[Ste98] G.W. Stewart. Matrix Algorithms, Vol I: Basic Decompositions. SIAM, Philadelphia,

1998.

[SS90] G.W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, San Diego,

CA, 1990.

[TB97] L.N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

